276 research outputs found

    Design and Implementation of a Full-Duplex Pipelined MAC Protocol for Multihop Wireless Networks

    Get PDF
    In multihop wireless networks, data packets are forwarded from a source node to a destination node through intermediate relay nodes. With half-duplex relay nodes, the end-to-end delay performance of a multihop network degrades as the number of hops increases, because the relay nodes cannot receive and transmit at the same time. Full-duplex relay nodes can reduce their per-hop delay by starting to forward a packet before the whole packet is received. In this paper, we propose a pipelined medium access control (PiMAC) protocol, which enables the relay nodes on a multihop path to simultaneously transmit and receive packets for full-duplex forwarding. For pipelined transmission over a multihop path, it is important to suppress both the self-interference of each relay node with the full-duplex capability and the intra-flow interference from the next relay nodes on the same path. In the PiMAC protocol, each relay node can suppress both the self- and intra-flow interference for full-duplex relaying on the multihop path by estimating the channel coefficients and delays of the interference during a multihop channel acquisition phase. To evaluate the performance of the PiMAC protocol, we carried out extensive simulations and software-defined radio-based experiments

    Graphite-anchored lithium vanadium oxide as anode of lithium ion battery

    Get PDF
    Graphite-anchored lithium vanadium oxide (Li1.1V0.9O2) has been synthesized via a “one-pot” in situ method. The effects of the synthesis conditions, such as the ratio of reaction components and calcination temperature, on the electrochemical performance are systematically investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), galvanostatic discharge/charge tests and differential scanning calorimetry (DSC). Compared with the simple mixture of graphite and lithium vanadium oxide, the graphite-anchored lithium vanadium oxide delivers an enhanced reversible capacity, rate capability and cyclic stability. It also shows better thermal stability.Web of Scienc

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks
    corecore